Zur Strukturaufklärung der Isomeren von α-Oximinocarbonsäureestern

Von

S. L. Spassov, G. Heublein, A. Jovtscheff, H. Reinheckel und V. Jehlička

Aus dem Institut für Organische Chemie der Bulgarischen Akademie der Wissenschaften, Sofia 13, dem Institut für Organische Chemie und Biochemie der Friedrich-Schiller-Universität Jena, dem Institut für Fettchemie der Deutschen Akademie der Wissenschaften, Berlin-Adlershof, und dem Institut für Physikalische Chemie der Technischen Hochschule für Chemie, Praha 6

Mit 2 Abbildungen

(Eingegangen am 19. Januar 1967)

Für eine Anzahl von syn- und $anti-\alpha$ -Oximino-fettsäureestern werden theoretisch und experimentell die Dipolmomente bestimmt und NMR- sowie IR-Spektren aufgenommen. Auf Grund dieser und früherer chemischer Untersuchungen werden die bevorzugten Raumstrukturen der syn- und anti-Formen ermittelt. Bei den syn-Formen sind in gleichem Maße zwei Rotationsisomere vertreten, die auf Grund von Resonanzeffekten und der Wasserstoffbindung relativ stabil sind.

The theoretical and experimental dipole moments for a number of syn- and $anti-\alpha$ -oximino esters are determined. NMR- and IR-spectra are reported. On the basis of these and previous chemical investigations the preferred steric structures of the syn- and anti-forms are ascertained. Two rotational isomers exist in the same degree with the syn-forms. Due to resonance effects and hydrogen bonds they are relatively stable.

In früheren Mitteilungen wurde über die Bildung von α -Oximinofettsäureestern durch Umsetzung von α -Brom-fettsäureestern mit NaNO₂ berichtet ^{1, 2}.

¹ N. Kornblum und J. H. Eicher, J. Amer. chem. Soc. **78**, 1494 (1956); N. Kornblum, R. K. Blackwood und J. W. Powers, l. c. **79**, 2507 (1957).

² *H. Reinheckel*, Mber. Dt. Akad. Wiss. **1**, 42 (1959); Mb. Chem. **98**, 1217 (1967).

Die dabei entstehenden Isomeren zeigen Unterschiede im chemischen und physikalischen Verhalten, die sie als *anti-* und *syn-*Formen charakterisieren^{2, 3}. Das betrifft die Löslichkeit in organischen Lösungsmitteln oder wäßrigen Alkalien, die Schmelzpunkte und das Verhalten gegenüber Reaktionspartnern, wie 2.4-Dinitrophenylhydrazin, o-Phenylendiamin oder Phenylisocyanat.

In diesem Beitrag soll mit Hilfe physikalischer Methoden eine weitergehende Strukturermittlung diskutiert werden.

Aus der Rotation um die N—O-Bindung der Oximgruppe ergeben sich verschiedene Strukturmöglichkeiten konformativer Natur. Untersuchungen von $Exner^4$ haben allerdings ergeben, daß infolge eines gewissen Doppelbindungsanteils der N—O-Gruppe deren freie Rotation stark eingeschränkt ist und deshalb die OH-Gruppe mit einiger Wahrscheinlichkeit bevorzugt in einer Ebene mit der C=N-Doppelbindung angeordnet ist. Daraus resultieren die folgenden Strukturen:

Bei Berücksichtigung der Rotation um die C—C-Bindung der Estergruppe verdoppelt sich die Zahl möglicher Strukturen. Auch in diesem Falle wird durch die Konjugation beider Doppelbindungen die Bildung zweier Vorzugslagen nahegelegt, die beide eine ebene Lage einnehmen können und sich am Beispiel der *syn-cis*-Form (1) folgendermaßen darstellen:

Für diese relativ "starren" Systeme sollte es möglich sein, aus dem Vergleich gemessener und durch Vektoranalyse berechneter Dipolmomente die bevorzugten Strukturen zu ermitteln.

³ A. Jovtscheff, H. Reinheckel, N. Bontscheff und S. Spassov, Mh. Chem. 96, 1639 (1965).

⁴ O. Exner, Collect. czechoslov. chem. comm. 24, 3214 (1959).

In Tab. 1 befinden sich die experimentellen Dipolmomente einer Reihe α -Oximino-fettsäureester.

			•		
α-Oximino-carbonsäure-	Dipolmomente		Schmp. [°C]		
methylester der	anti	syn	anti	syn	
Hydrozimtsäure	1,68	2,49	7676,5	100,5—101	
Buttersäure	1,71	2,56	62 - 63	flüssig	
Myristinsäure	1,65	2,36	87 - 88	49 - 49, 5	
Palmitinsäure	1,80	$2,\!48$	93 - 94	59 - 59, 5	
Stearinsäure	2,67	2,44	96 - 97	64 - 65	
Behensäure	2,35	2,50	100, 5 - 101, 5	69 - 71	

Tabelle 1. Experimentelle Dipolmomente in [D] und Schmelzpunkte der verwendeten α-Oximino-carbonsäuremethylester

Der Berechnung des Gesamtmomentes wurden die einzelnen Bindungsmomente zugrunde gelegt; die Vektoraddition erfolgte graphisch. Die Genauigkeit dieser Methode erscheint ausreichend, wenn man ihr die Unsicherheit in den einzelnen Bindungsmomenten gegenüberstellt.

Die Richtung der Dipolvektoren zeigt vom negativen zum positiven Ladungsschwerpunkt des Bindungsdipols. Diese Festlegung ist willkürlich und auf das Endergebnis ohne Einfluß.

Die zur Berechnung benutzten Parameter enthält Tab. 2.

Bindung	μ [D]	Richtung	Lit.	
HCaliph.	0,30	<u> </u>	4	
H—O	1,51	<	4	
C—O	0,74	<	4	
C = O	2,5	<	5	
NO	0,3	~	4	
C = N	1,8	~	4	
Gruppen- moment				
$-CH_3$ (R)	0,3	>		
−C—OCH₃ ∥ O	1,38		62°	
C = NOH-trans	0,84	\sum	54°	
C = NOH-cis	3,1	4	15°	
Eingesetzte Winkel CO	\widehat{O} — $CH_3 = 1$	05° ; C= \widehat{N} —O=1	22°; N $-0-H = 105^{\circ}$	

Tabelle 2. Parameter zur Berechnung theoretischer Dipolmomente

⁵ Landolt-Börnstein, Physikal. Tabellen, **3**/II, 507 (1951).

In Tab. 3 sind die berechneten Dipolmomente zusammengestellt. μ_1 entspricht der oben mit A bezeichneten Struktur, μ_2 der Form B.

Struktur	$\begin{matrix} \mathbf{A} \\ \mu_1, \ [\mathrm{D}] \end{matrix}$	$\substack{\mathbf{B}\\\mu_2,[\mathrm{D}]}$	
1, syn-cis	3,93	1,90	
2, syn-trans 3, anti-cis	2,03 4,49	2,06	
4, anu-trans	1,38	1,55	

Tabelle 3. Berechnete Dipolmomente

Die experimentellen Momente der Substanzen mit dem großen Alkylrest (R) sind infolge unübersichtlicher Winkelverhältnisse nicht mehr mit den berechneten Momenten vergleichbar. Aus dem Vergleich von berechneten und gemessenen Momenten folgt am eindeutigsten für die *anti*-Formen die Struktur 4 als eine *anti--trans*-Anordnung. Da bei dieser Form intramolekulare Wechselwirkungen der Gruppendipole ausgeschlossen sind, dürfte die Genauigkeit der Berechnung auch ausreichen, der Form A eine größere Wahrscheinlichkeit einzuräumen als der Form B. Das Vorliegen der *anti--trans*-(A)-Form würde auch mit den Untersuchungen von *Exner* in Übereinstimmung stehen, der für ähnliche Verbindungen⁴ die Bevorzugung dieser Struktur nachgewiesen hat. Diese Aussage kann nur durch die Dipolmomentmessung getroffen werden; *NMR*-spektroskopisch werden keine Beiträge erbracht.

Bei den syn-Formen scheidet die Struktur 2 einerseits auf Grund des chemischen Verhaltens aus^{2, 3}. Zum anderen spricht das Fehlen einer freien OH-Bande im *IR*-Spektrum² ebenfalls für die syn—cis-Form (1), deren besondere Begünstigung aus dem bei ebener Anordnung möglichen quasi- π -elektronischen Verhalten zu erklären ist.

Eine Unterscheidung von A und B bei der syn—cis-Form ist jedoch auf der Basis der Dipolmomente nicht möglich. Zwar kann das Überwiegen der Struktur 1 (B) ausgeschlossen werden, da das berechnete Moment zu weit unter dem gemessenen liegt. Bei dieser Form müßte durch die Möglichkeit zur Bildung eines Wasserstoffbrückenbindungsringes mit dem Sauerstoff der OCH₃-Gruppe und dem damit verbundenen Ladungsausgleich ein Moment kleiner als 2 gemessen werden. Andererseits spricht die ungewöhnlich hohe Differenz zwischen gemessenem und berechnetem Moment auch nicht für die Bevorzugung von 1 (A).

Zur weiteren Klärung wurde die NMR-Spektroskopie herangezogen. Von den folgenden Substanzen wurden 20proz. Lösungen in CDCl₃, Benzol, CS₂, Aceton-D₆ und Dimethylsulfoxid-D₆ bei 35° C untersucht:

1. syn-a-Oximino-hydrozimtsäure-methylester (Abb. 1a).

2. anti-a-Oximino-hydrozimtsäure-methylester (Abb. 1b).

1686 S. L. Spassov u. a.: Zur Strukturaufklärung der Isomeren...

3. syn-a-Oximino-buttersäure-methylester.

4. anti-α-Oximino-capronsäure-methylester.

Die *NMR*-Spektren zeigen in den verschiedenen Lösungsmitteln prinzipiell ähnliches Verhalten mit gewissen Einflüssen des jeweiligen Lösungsmittels auf die chemische Verschiebung, die nicht einzeln diskutiert werden sollen.

Die in $CDCl_3$ gefundenen Protonensignale sind in ppm (δ -Werte) angegeben, bezogen auf den Standard Tetramethylsilan. Für die Multipletts ist die Position des Schwerpunktes aufgeführt.

1. 3,75; 3,85 (zwei Singletts-CH₃O) \cdot 3,90; 3,97 (zwei Singlett₂) \cdot 7,17 (breites Singlett₅).

2. 3,80 (Sing.-CH₃O) \cdot 3,99 (Sing.-CH₂) \cdot 7,28 (Sing.-C₆H₅).

3. 1,02; 1,18 (zwei Trip.-CH₃) \cdot 2,59; 2,72 (zwei Quart.-CH₂) \cdot 3,82; 3,87 (zwei Sing.-CH₃O).

4. 0,93 (Trip.-CH₃) \cdot 1,45 (Multip.- β , γ -CH₂) \cdot 2,63 (Trip.- α -CH₂) \cdot 3,84 (Sing.-CH₃O) \cdot 10,02 (Sing.-NOH).

Die Spektren der *anti*-Isomeren entsprechen mit den einfachen CH_3 - und CH_2 -Signalen sowie dem Nachweis des NOH-Signals den Erwartungen und befinden sich nicht im Widerspruch zu den Dipolberechnungen.

Das Ausbleiben des NOH-Signals der syn-Formen unterstreicht zunächst das Vorliegen einer sehr starken Wasserstoffbrückenbindung in der syn-cis-Anordnung*. Diese Feststellung kann noch erhärtet werden durch die Verfolgung der Geschwindigkeit des Deuteriumaustausches mit dem Oximproton.

Fügt man nämlich den Lösungen der Substanzen 1-4 in CDCl₃ etwas D_2O zu, so kann an Hand des HOD-Signals bei 4,7 ppm. der Austausch beobachtet werden. Die Verbindungen 2 und 4 (*anti*-Form) zeigen eine hohe Austauschgeschwindigkeit des aciden Oximprotons, die bereits nach 5 Min. erkannt werden kann. Im Gegensatz dazu tritt das HOD-Signal bei der syn-Form 3 erst nach viertägigem Stehen bei Raumtemperatur auf und kann für die syn-Form 1 unter den gleichen Bedingungen selbst nach 10 Tagen nicht gefunden werden.

Zu den gleichen Ergebnissen führten Untersuchungen in CH₃COOD-Lösungen, wobei die Austauschgeschwindigkeit mit Hilfe des COOH-Signals bei 10,5 ppm verfolgt wurde.

Von besonderem Interesse ist nun die Aufspaltung der Signale der syn-Verbindungen, als deren Ursache ein Gleichgewicht der Formen A und B angenommen werden könnte.

Die aufgespaltenen Signale sind von gleicher Intensität, womit auf annähernd gleiche Anteile der Formen A und B hingewiesen wird.

^{*} Die tautomere Struktur eines α -Nitrosoesters, die ebenfalls das Fehlen des NOH-Signals erklären könnte, scheidet auf Grund des gesamten NMR-Spektrums und des chemischen Verhaltens aus.

Die genaue Bestimmung der kinetischen Parameter des Gleichgewichtes ist nicht möglich, da keine wesentliche Veränderung der Doppelsignale bei Temperaturvariation (35—150° C) erfolgt. So hat z. B. der Abstand zwischen den beiden CH_3O -Signalen von 3 einen Wert von 2,7 Hz bei 35° C und 2,3 Hz bei 150° C (bei 60 MHz, 20proz. Lösung in Benzol). Vom letzteren Ergebnis kann man mit Hilfe bekannter Beziehungen^{6, 7} berechnen, daß die freie Aktivierungsenergie ΔF^* des Übergangs $\mathbf{A} \rightleftharpoons \mathbf{B}$ mindestens 24 kcal/Mol betragen soll und die mittlere Lebensdauer von A bzw. B bei Raumtemperatur mindestens 10⁵ Sek. ist. Eine so große Barriere der inneren Rotation läßt sich mit dem partiellen Doppelbindungscharakter der C—C-Bindung und der Wasserstoffbrücken-Stabilisierung erklären. Vielleicht würde die präparative Trennung von A und B auch möglich sein, was für einige Carbonsäureamide⁸ und Nitrosoamine⁹ schon erreicht ist.

Das Vorliegen zweier syn—cis-Formen erklärt nun auch die zusätzliche Aufspaltung der Carbonylfrequenz im IR-Spektrum (Abb. 2), die auch bei starker Verdünnung (10⁻³ molar) erhalten bleibt und damit einen intermolekularen Effekt ausschließt. Würde nur die Form **A** vorliegen, so wäre die Carbonylaufspaltung nicht zu erklären.

Auch die Bande der C=N-Bindung ist bei der syn-Form aufgespalten, wobei erhebliche Intensitätsunterschiede zu beobachten sind. Die weniger intensive Bande bei 1635 cm⁻¹ entspricht der für Oxime normalen Lage, die intensive Bande bei 1575 cm⁻¹ der C=N-Schwingung in Stickstoff-

⁶ H. S. Gutkowsky und C. H. Holm, J. Chem. Physics 25, 1228 (1956).

⁷ K. J. Laidler, Chemical Kinetics, 2nd. Ed., McGraw-Hill, New York 1965, S. 89.

⁸ H. A. Staab und D. Lauer, Tetrahedron Letters 1966, 4593.

⁹ A. Mannschreck, H. Münch und A. Mattheus, Angew. Chem. 78, 751 (1966).

Heterocyclen. Die Bande der C=N-Schwingung fehlt im Spektrum des anti-Isomeren, eine Erscheinung, die zuweilen beobachtet wird, vor allem bei konjugierten Systemen. Die Bande der C=O-Schwingung ist hier unabhängig von der Konzentration stets einfach und scharf bei 1740 cm⁻¹.

Ein Gleichgewicht der Formen A und B steht schließlich im Einklang mit dem Vergleich gemessener und berechneter Dipolmomente. Daß der experimentelle Wert (2,4-2,6 D) nicht dem Mittel der theoretischen Werte (4,46 für A und 2,16 für B) entspricht, ist auf eine erhebliche Momentreduzierung durch den bereits erwähnten Ladungsausgleich über die intramolekulare Wasserstoffbrücke zurückzuführen¹⁰.

Auf Grund der vorliegenden Untersuchungen kann zusammenfassend festgestellt werden, daß die beschriebenen α -Oximino-fettsäure-ester in der *anti*-Form die Struktur 4-(A) bevorzugen, während in der *syn*-Form ein Gleichgewicht zwischen 1-(A) und 1-(B) vorliegt.

Experimenteller Teil

Die Aufnahme der IR-Spektren erfolgte mit dem Spektralphotometer UR 10 des VEB Carl Zeiss Jena.

Die NMR-Spektren wurden mit dem Varian A-60-Spektrometer bei 60 MHz aufgenommen. Für die Spektren bei höheren Temperaturen wurde das Varian V-6057 Temperaturvariierungs-Gerät verwendet.

Die experimentellen Dipolmomente wurden in verd. Benzollösungen bei 25° C gemessen (Molarbruchbereich 10^{-4} bis 10^{-3}). Die Messungen der *DK* wurden mit der Heterodynapparatur ausgeführt (Meßfrequenz 1,2 MHz), die Dichten im *Ostwald—Sprengel*-Pyknometer mit einer Genauigkeit von 0,003% bestimmt. Die Polarisationen wurden mit Hilfe der Methode von *Halverstadt* und *Kumler*¹¹, die Refraktionen mit Hilfe der Inkremente berechnet.

¹⁰ G. Drefahl, G. Heublein und B. Noll, J. prakt. Chem. 21, 210 (1963).

¹¹ I. F. Halverstadt und W. D. Kumler, J. Amer. chem. Soc. 64, 2988 (1942).